# Physics Formulas for motions

$For\quad speed,\quad { V=\frac { S }{ t } },\quad Where\quad V=speed,\quad S=\quad distance,\quad t=time$

$For\quad acceleration,\quad { a=\frac { V }{ t } }\quad where\quad a=acceleration\quad$

For the equation that connect, speed, velocity, acceleration, distance and time, we have four as listed below.

${ S=\frac { V+U }{ 2 } \times t\quad ,\quad where\quad V=final\quad velocity,\quad U=initial\quad velocity }$

V=U+2aS

$S=Ut+\frac { 1 }{ 2 } a{ t }^{ 2 }$

${ { V }^{ 2 }={ U }^{ 2 }+2aS }$

# Physics formulas for work done

${ W=F\times S,\quad Where\quad W\quad =work done,\quad F\quad =force,\quad and\quad S=distance }$

$For\quad work\quad done\quad along\quad and\quad inclined\quad plane\\ \\ { W=F\times SCos\theta \quad ,\quad Where\quad \theta =angle\quad of\quad inclination }$

W=Mgh (work done when something fall from up

# Physics formulas for energy

${ { For\quad kinetit\quad energy,\quad { E }_{ K }=\frac { 1 }{ 2 } M{ V }^{ 2 } }\quad where\quad m=mass,\quad v=velocity }$

EK=mgh , m=mass, g=gravity h=height

Physics formulas for Power

${ Power=\frac { workdone }{ time\quad taken } }$

${ power=\frac { F\times S }{ t } ,F=force,S=distance\quad and\quad t=time }$

${ Power=F\times V,\quad where\quad V=velocity=\frac { S }{ t } }$

Physics formulas for linear expansion of solid

${ { \alpha =\frac { { L }_{ 2 }-{ L }_{ 1 } }{ { L }_{ 1 }({ \theta }_{ 2 }-{ \theta }_{ 2 }) } { K }^{ -1 } } }$

Physics formula for volume or cubic expansivity

${ \gamma =\frac { { V }_{ 2 }-{ V }_{ 1 } }{ { { V }_{ 1 } }{ (\theta }_{ 2 }-{ \theta }_{ 1 }) } }$

Physics formulas for area or superficial expansivity

${ { \beta =\frac { { A }_{ 2 }-{ A }_{ 1 } }{ { A }_{ 1 }({ \theta }_{ 2 }-{ \theta }_{ 1 }) } } }$

Physics formulas for current electricity

Q= It, where Q= electric charge, I =current, and t=time

V=IR, where V=potential difference in volts, R= resistance in ohms, and I= current in ampere

R= R1 + R2 + R3 …(total resistance in series)

${ { I=\frac { E }{ R+r } } },\quad where\quad I=current,\quad E=e.mf,\quad R=external\quad resistance\quad and\quad r=internal\quad resistance$

${ \frac { 1 }{ { { R } } } =\frac { 1 }{ { R }_{ 1 } } +\frac { 1 }{ { R }_{ 2 } } +\frac { 1 }{ { R }_{ 3 } } ....(total\quad resistance\quad in\quad parallel) }$

${ R=\frac { \rho L }{ A } ,\quad R=resistance,\quad \rho =resistivity,\quad L=lenght\quad and\quad A=area }$

${ \rho =\frac { RA }{ L } \left( resistivity \right) }$

${ \sigma =\frac { 1 }{ \rho } \left( conductivity \right) }$

Physics formulas for work done in electric current

W=VQ , where W=work done, V=potential difference and Q = charges

W=VIt, where I=, current, t = time

W=IRt , where R = resistance

Physics formulas for electric power

P = IV, where , P = electric power I = current, and  V= potential difference

P =I2R   where R= resistance,

${ p=\frac { { V }^{ 2 } }{ R } }$

Physics formulas for Elasticity  and Hooke’s Law

${ Young\quad modulus\quad E\quad =\frac { TENSILE\quad STRESS }{ TENSILE\quad STRAIN } }$

${ STRESS\quad =\frac { Force }{ Areas } =\frac { F }{ A } \\ \\ \\ Strain=\frac { Extension }{ Original\quad Length } =\frac { e }{ { l }_{ 0 } } }$

Hooke’s Law

F =Ke , where F=force or load, K= Elastic constant , and e = extension

For work done by stretching or compressing elastic material

${ w=\frac { 1 }{ 2 } }fe,\quad w=work\quad done,\quad f=force,\quad and\quad e=extension$

${ W=\frac { 1 }{ 2 } K{ e }^{ 2 },\quad K=elastic\quad constant }$

Physics formulas for surface tension

${ Surface\quad tension\quad T=\frac { F }{ d } ,\quad F=force,\quad d=length}$

${ { \\ T=\frac { rh\rho g }{ 2 } \quad ,\quad to\quad prove\quad this,\quad use\quad 2\pi rT\quad =\quad mg } }$

r=radius, h=height, g=acceleration due gravity, and ρ=density